Berlin 2025 IPMA[»]
34th World
Congress

WELCOME

to the 34th IPMA World Congress

CONCEPTUAL FRAMEWORK TO GUIDE THE APPLICATION OF ARTIFICIAL INTELLIGENCE IN PROJECT MANAGEMENT DECISION MAKING

Ms Anchen Wiegand & Prof Taryn Bond-Barnard

>> PROF DR TARYN **BOND-BARNARD**

MEM Academic Programme Coordinator & researcher & lecturer in Project Management.

INTRODUCTION

- Integral to success
- Project decision-making (PDM)
- Limitation of effective PDM

- Potential as a DM tool
- Al in PM (e.g. SPMIS)
- Improve success rates

- Competitive advantage
- Failure rates (±50% over 20 years)
- Pressure to deliver

- Require high-quality information
- Project Intelligence
- Information System (e.g.
 PMIS)

INTRODUCTION

Research Problem

Research Objective

Research Questions

 Lack of guidelines and frameworks to assist implementation of AI to aid PDM

 Develop a conceptual framework for project managers to guide the potential implementation of AI as a tool for PDM

- What **factors** should be considered to apply Al in PDM?
- 2. Are certain factors
 more or less
 important than others
 to consider when
 applying AI in PDM?

THEORETICAL FRAMEWORK

More complex projects

Decision-making in PM

Al application in PM:

Process Groups

Knowledge Areas

Most

Less

Process Groups

Monitoring & Controlling

Planning

Closing

Knowledge Areas

Cost, Time & Risk Management

Stakeholder,
Communication &
Resource
Management

THEORETICAL FRAMEWORK

7 x Success Groups (with Factors) of Al application in PM:

Success Groups

- Data
- Model and Algorithm
- User Interface and System Development
- Safety and Security
- Project
- Organization
- Human-related aspects

EXISTING CONCEPTUAL FRAMEWORK

To understand **relationships** between factors

Structured practical **instrument** for organizations to **design** and **apply** Al solutions for PM

Important concepts:

Al requirements for PM application domain

PM requirements for Al solution domain

6 x components

Shortcomings:

Unclear factor importance

Al system factors and solution domain is unclear

Al and PM requirements and barriers not addressed

Al to support decision-making is not presented

RESEARCH METHODOLOGY

Qualitative

Semi-structured focus group interviews

7 interviewees from a SA project-based engineering company

Transcribed and coded in ATLAS.ti using **thematic** analysis

To identify and confirm factors

Quantitative

- Online survey
- 34 participants from **MEM** students and alumni
- Descriptive statistics using MS Excel and SPSS
- To determine factor importance

QUALITATIVE RESULTS

Critical factors to consider to apply
Al in PDM
Data and Model
Human

Category/ Factor	Code/ Subfactor				
	Data accuracy*	Digitalization*			
	Data quality	Establish rules			
	Data quantity*	Feedback procedure			
Data and Model*	Data relevance	Define data to capture			
	Data reliability	Reinforcement learning			
	Data uniformity	Traceability*			
	Generate data				
	Human & machine	Understand limitations			
	collaboration*	User technical			
Human*	Critical thinking	understanding and			
	Openness to change	ability*			
	Trust in Al*				
	Standardized products	Digitalization			
Organization	Standardized processes	Company platform			
		programs			
Project	Project complexity	Project type			
	Project repeatability	Product novelty			
Safety	Ethical DM	-			

^{*}Most frequent categories or codes from the transcript.

	1) Data	2) Safety & Security	3) Model & Algorithm	4) Human	5) UI & System Development	6) Organization	7) Project
	1. Transparency	 Confidentiality 	1. Transparency	1. Bounded	1.Interoperability*	 Digital strategy* 	1. Complexity and
	2. Quality and	Data and Model	2.Accuracy*	rationality*	2.Simplicity*	2. Strategic	Uniqueness*
	Relevance*	Security*	3. Interpretability*	2. Technology	3. Flexibility and	alignment*	2. Scope
	3. Accessibility/	Policies and	4. Consistency*	understanding	adaptability	3. Available funds*	3. Goal
	Availability*	regulations*	5. Validation*	and skills*	4. Standardized	4. Type*	4. Product maturity
	4. Digitalization*	• Privacy	6. Renewal and	3. Change	processes*	5. Product	5. PM Method*
	5. Quantity*	Safeguards*	retraining	management*	5. Natural language	development	6. Size*
	6. Storing*	• Ethical concerns*	7. Automated	4. Critical thinking	processing	strategy	7. Industry Type
	7. Automatic data		analysis		6. Establish the		
	capturing		8. Selection and		operator's		
			development*		knowledge base		
С			9. Predictive model		7.UI Front-end		
					transparency		
		(in no particular order)					

QUANTITATIVE RESULTS | DATA

1) Data

- 1. Transparency
- Quality and Relevance*
- Accessibility/Availability*
- 4. Digitalization*
- 5. Quantity*
- 6. Storing*
- Automatic data capturing

*Barriers

QUANTITATIVE RESULTS | SECURITY & SAFETY

2) Safety & Security

- Confidentiality
- Data and Model
 Security*
- Policies and regulations*
- PrivacySafeguards*
- Ethical concerns*

Building Trust in Al Adoption

Confidentiality

Ensuring data is protected from unauthorized access

Privacy

Respecting individuals' rights to control their data

Ethics

Adhering to moral principles in Al practices

Regulations

Complying with legal standards for data handling

(in no particular order)

QUANTITATIVE RESULTS | MODEL & ALGORITHM

3) Model & Algorithm

- 1. Transparency
- 2. Accuracy*
- 3. Interpretability*
- 4. Consistency*
- 5. Validation*
- 6. Renewal and retraining
- 7. Automated analysis
- 8. Selection and development*
- 9. Predictive model

Al Model Improvement Cycle

Perform Retraining

Update the model with new data and insights.

Conduct Validation

Confirm the model's performance and consistency.

Ensure Accuracy

Verify the model's precision and reliability.

Enhance Interpretability

Make the model's outputs understandable.

^{*}Barriers

QUANTITATIVE RESULTS | HUMAN

4) Human

- Bounded rationality*
- Technology understanding and skills*
- Change management*
- 4. Critical thinking

Managing AI adoption requires addressing hidden human factors.

QUANTITATIVE RESULTS | UI & SYSTEM DEVELOPMENT

5) UI & System Development

- 1. Interoperability*
- 2. Simplicity*
- 3. Flexibility and adaptability
- 4. Standardized processes*
- Natural language processing
- 6. Establish the operator's knowledge base
- 7.UI Front-end transparency

Pathways to Al Acceptance

^{*}Barriers

QUANTITATIVE RESULTS | ORGANISATION

6) Organization

- 1. Digital strategy*
- Strategic alignment*
- 3. Available funds*
- 4. Type*
- Product development strategy

The Power of Organizational Synergy in Al Success

QUANTITATIVE RESULTS | PROJECT

7) Project

- 1. Complexity and Uniqueness*
- 2. Scope
- 3. Goal
- 4. Product maturity
- 5. PM Method*
- 6. Size*
- 7. Industry Type

Which project factors should be prioritized for AI project success?

Size

Balancing project size with resources ensures feasibility.

Methods

Choosing the right methods enhances efficiency and effectiveness.

Scope

Defining a clear scope ensures focus and prevents overextension.

Complexity

Managing complexity can streamline processes and reduce risks.

*Barriers

CONCEPTUAL FRAMEWORK TO IMPLEMENT AI IN PDM

Legend:

- Barriers for implementation
- 1) Groups numbered from most to least important
 - Factors listed from most to least important

CONCLUSION

- ✓ Research Questions
- ✓ Research Objective

Study limitations:

Identified factors not exhaustive

Limited qualitative data

Limited quantitative data

Recommendations for further research:

Application of the proposed framework

Influence of an Al decision-making tool on bounded rationality and cognitive biases

Ethical and legal implications of AI biases on PDM, cognitive biases and project outcomes

STELLENBOSCH UNIVERSITY MASTERS IN ENGINEERING MANAGEMENT PROGRAMME (MEM)

THANK YOU FOR YOUR ATTENTION **QUESTIONS?**

MS ANCHEN WIEGAND

tarynjbarnard@sun.ac.za

PROF TARYN BOND-BARNARD

tarynjbarnard@sun.ac.za

REFERENCES

- 1. STRANG, K. D. & VAJJHALA, N. R. 2022. Testing risk management decision making competency of project managers in a crisis. The Journal of Modern Project Management, 10, 52-71. doi: 10.19255/JMPM02904. Available:

 https://journalmodernpm.com/manuscript/index.php/jmpm/article/view/JMPM02904.
- 2. VAN BESOUW, J. & BOND-BARNARD, T. 2021. Smart Project Management Information Systems (SPMIS) for Engineering Projects Project Performance Monitoring & Reporting. International Journal of Information Systems and Project Management, 9, 78-97. doi: https://doi.org/10.12821/ijispm090104. Available: https://www.proquest.com/docview/2563847121?pq-origsite=gscholar&fromopenview=true&sourcetype=Scholarly%20Journals.
- 3. BARCAUI, A. & MONAT, A. 2023. Who is better in project planning? Generative artificial intelligence or project managers? Project Leadership and Society, 4. doi: 10.1016/j.plas.2023.100101. Available: https://www.sciencedirect.com/science/article/pii/S2666721523000224.
- 4. CANIËLS, M. C. J. & BAKENS, R. J. J. M. 2012. The effects of Project Management Information Systems on decision making in a multi project environment. International Journal of Project Management, 30, 162-175. doi: 10.1016/j.ijproman.2011.05.005. Available: https://www.sciencedirect.com/science/article/abs/pii/S0263786311000688.
- 5. HASHFI, M. I. & RAHARJO, T. 2023. Exploring the Challenges and Impacts of Artificial Intelligence Implementation in Project Management: A Systematic Literature Review. International Journal of Advanced Computer Science and Applications, 14, 366-376. doi: 10.14569/IJACSA.2023.0140940. Available: https://www.proquest.com/docview/2883174147?pg-origsite=gscholar&fromopenview=true&sourcetype=Scholarly%20Journals.
- 6. AUTH, G., JOHNK, J. & WIECHA, D. A. A Conceptual Framework for Applying Artificial Intelligence in Project Management. Proceedings 2021 IEEE 23rd Conference on Business Informatics, CBI 2021 Main Papers, 2021. 161-170. doi: 10.1109/CBI52690.2021.00027. Available: https://ieeexplore.ieee.org/abstract/document/9610711.